A Narrow-Band Level-Set Method with Dynamic Velocity for Neural Stem Cell Cluster Segmentation

نویسندگان

  • Nezamoddin Nezamoddini-Kachouie
  • Paul W. Fieguth
چکیده

Neural Stem Cells (NSCs) have a remarkable capacity to proliferate and differentiate to other cell types. This ability to differentiate to desirable phenotypes has motivated clinical interests, hence the interest here to segment Neural Stem Cell (NSC) clusters to locate the NSC clusters over time in a sequence of frames, and in turn to perform NSC cluster motion analysis. However the manual segmentation of such data is a tedious task. Thus, due to the increasing amount of cell data being collected, automated cell segmentation methods are highly desired. In this paper a novel level set based segmentation method is proposed to accomplish this segmentation. The method is initialization insensitive, making it an appropriate solution for automated segmentation systems. The proposed segmentation method has been successfully applied to NSC cluster segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

A Framework for Segmentation of Inhomogeneous Live Cell Images using Fractional Derivatives and Level Set Method

Cell segmentation has gained significant importance in modern biological image processing applications. The commonly used image segmentation algorithms are region based and depend on the homogeneity of the intensities of the pixels in the region of interest. But due to the highly inhomogeneous behavior of cell nuclei and background, feature overlapping between the two regions lead to misclassif...

متن کامل

A Framework for Segmentation of Inhomogeneous Live Cell Images using Fractional Derivatives and Level Set Method

Cell segmentation has gained significant importance in modern biological image processing applications. The commonly used image segmentation algorithms are region based and depend on the homogeneity of the intensities of the pixels in the region of interest. But due to the highly inhomogeneous behavior of cell nuclei and background, feature overlapping between the two regions lead to misclassif...

متن کامل

Neural Network Approach for Herbal Medicine Market Segmentation

Market segmentation is the start point of executing targeted marketing strategy. This study aims to determine fit dimensions and appropriate specifications for the segmentation of herbal medicines market in order to provide production and market departments with fit strategies by identifying the profile of the market customers and recognizing their differences in the identified indices. This is...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005